

stitch2d

stitch2D is a Python script that stitches a two-dimensional grid of tiles
into a mosaic. It was originally developed for stitching together images
collected on various microscopes in the Department of Mineral Sciences at
the Smithsonian National Museum of Natural History.

When tiles are stitched together by stitch2d, they are translated, not
rotated, resized, or warped. As a result, stitch2d requires all images to
be the same size and orientation. Images must overlap, although they don’t
necessarily need to be arranged in a grid.

Source code for this project is located on
GitHub [https://github.com/adamancer/stitch2d].

Contents

	User guide
	Install

	Quick start

	Overview

	Beyond 8-bit images

	Similar tools

	API
	stitch2d.mosaic

	stitch2d.tile

User guide

Install

Install stitch2d with pip:

pip install stitch2d

Or install from the GitHub repository using git and pip:

git clone https://github.com/adamancer/stitch2d
cd stitch2d
pip install .

Quick start

The following code can be used to create and save a mosaic:

from stitch2d import create_mosaic

mosaic = create_mosaic("/path/to/tiles")

try:
 mosaic.load_params()
except FileNotFoundError:
 mosaic.downsample(0.6)
 mosaic.align()
 mosaic.reset_tiles()
 mosaic.save_params()

mosaic.smooth_seams()
mosaic.save("mosaic.jpg")

A simple stitching workflow is also available from the command line. To
create a smoothed mosaic and save it as a JPEG, run:

stitch2d path/to/tiles --smooth -output mosaic.jpg

For more information about using this command, including available
parameters, run:

stitch2d --help

Overview

stitch2d includes two classes that can be used to create mosaics from a
list of tiles:

	Mosaic, which incorporates no
information about how the tiles in the mosaic are arranged

	StructuredMosaic, which arranges the
tiles into a grid based on parameters supplied by the user

You can also use create_mosaic(), as above,
which accepts the same arguments as
StructuredMosaic. This function returns a
StructuredMosaic if grid parameters are
provided or can be inferred from the filenames of the tiles or a
Mosaic if not.

Mosaic

Since Mosaic doesn’t know anything about
the tile structure, it can be slow, especially for large grids where
lots of tiles need to be compared. It’s almost always faster to use
StructuredMosaic where possible.

Initialize a Mosaic by pointing it to the
directory where the tiles of interest live:

from stitch2d import Mosaic

mosaic = Mosaic("/path/to/tiles")

Mosaic also includes a class attribute,
num_cores, to specify how many cores
it should use when aligning and stitching a mosaic. By default, it uses
one core. Modify this value with:

Mosaic.num_cores = 2

Even when using multiple cores, detecting and extracting features can be
time consuming. One way to speed up the process is to reduce the
resolution of the tiles being analyzed:

mosaic.downsample(0.6) # downsamples all tiles larger than 0.6 mp

Alternatively you can resize the tiles without the size check:

mosaic.resize(0.6) # resizes all tiles to 0.6 mp

You can then align the smaller tiles:

mosaic.align()

In either case, you can restore the full-size images prior to stitching
the mosaic together:

mosaic.reset_tiles()

Sometimes brightness and contrast can vary significantly between
adjacent tiles, producing a checkerboard effect when the mosaic is
stitched together. This can be mitigated in many cases using
smooth_seams(), which aligns
brightness/contrast between neighboring tiles by comparing areas of
overlap:

mosaic.smooth_seams()

Once the tiles have been positioned, the mosaic can be viewed:

mosaic.show()

Or saved to a file:

mosaic.save("mosaic.tif")

Or returned as a numpy array if you need more control over the final
mosaic:

arr = mosaic.stitch()

The default backend, opencv, orders color channels as BGR. You may want
to reorder the color channels before working with the image in a
different program. To get an RGB image from a BGR image, use:

arr = arr[...,::-1].copy()

New in 1.1: Or specify the desired channel order when stitching:

arr = mosaic.stitch("RGB")

Once the tiles are positioned, their locations are stored in the
params attribute, which can be saved
as JSON:

mosaic.save_params("params.json")

Those parameters can then be loaded into a new mosaic if needed:

mosaic.load_params("params.json")

StructuredMosaic

StructuredMosaic allows the user to specify
how the tiles in the mosaic should be arranged. For tilesets of known
structure, it is generally faster but otherwise works the same as
Mosaic. Initialize a structured mosaic
with:

from stitch2d import StructuredMosaic

mosaic = StructuredMosaic(
 "/path/to/tiles",
 dim=15, # number of tiles in primary axis
 origin="upper left", # position of first tile
 direction="horizontal", # primary axis (i.e., the direction to traverse first)
 pattern="snake" # snake or raster
)

For large tilesets where adequate-but-imperfect tile placement is
acceptable, StructuredMosaic can use its
knowledge of the tile grid to quickly build a mosaic based on the
positions of only a handful of tiles:

Stop aligning once 5 tiles have been successfully placed
mosaic.align(limit=5)

Build the rest of the mosaic based on the positioned tiles. If from_placed
is True, missing tiles are appended to the already positioned tiles. If
False, a new mosaic is calculated from scratch.
mosaic.build_out(from_placed=True)

The build_out() method can
also be used to ensure that all tiles (including those that could not be
placed using feature matching) appear in the final mosaic. The primary
disadvantage of this method is that the placement of those tiles is less
precise.

Beyond 8-bit images

New in 1.2: The Tile class now includes a
prep_imdata() method that can be used to
tweak the image data being used to align the mosaic. When using the
default OpenCVTile class, this method creates an 8-bit copy of the image
data to use for feature detection and matching while retaining the
original data to use when building the mosaic.

The default behavior of prep_imdata() is
simplistic. To customize it, use a subclass. For example, the default
method scales the intensities of the original data based on the maximum
intensity found in the array. For images with a small number of
extremely bright pixels, this can yield unusably dim images. A better
approach may be to use np.percentile():

import numpy as np

class MyTile(OpenCVTile):

 def prep_imdata(self):
 imdata = self.imdata - self.imdata.min()
 return np.uint8(255 * imdata / np.percentile(imdata, 99))

mosaic = create_mosaic("path/to/tiles", tile_class=MyTile)

Similar tools

The opencv package includes powerful tools for stitching 2D and 3D
images).
Much of that functionality has been ported to Python as the
stitching [https://github.com/lukasalexanderweber/stitching] package,
which streamlines the opencv API and includes a useful
tutorial [https://github.com/lukasalexanderweber/stitching_tutorial]. I
didn’t have any luck getting it to work consistently with microscope
tilesets, but it includes advanced features missing from this package
(lens corrections, affine transformations beyond simple translation,
etc.) and can be configured to work with 2D images. It’s definitely
worth a look for tilesets more complex than the simple case handled
here.

Fiji [https://imagej.net/software/fiji/] also includes a 2D/3D
stitching tool.

API

Stitches a 2D grid of images into a mosaic

stitch2d.mosaic

Reads and stitches images from a 2D grid into a mosaic

	
class stitch2d.mosaic.Mosaic(path_or_tiles, tile_class=None)

	Bases: object

Stitches a mosaic from a list of tiles

	
grid

	tiles arranged into a grid

	Type

	list

	
shape

	shape of the mosaic as (height, width[, channels])

	Type

	tuple

	
size

	number of tiles in the mosaic

	Type

	tuple

	
tile_class

	class to use for tiles in the mosaic

	Type

	class

	
num_cores = 1

	Number of cores to use when processing images

	Type

	int

	
__init__(path_or_tiles, tile_class=None)

	Initializes a mosaic from a list of tiles

	Parameters

	
	path_or_tiles (str or list-like) – either the path to a directory containing tiles, a list of Tiles,
or a list of strings or arrays that can be used to create a Tile

	tile_class (class) – class to use for tiles in the mosaic. Defaults to OpenCVTile.

	
property tiles

	Gets a flattened list of all tiles in grid order

	
property placed

	Calculates number of tiles that have been placed in the mosaic

	
property params

	Summarizes parameters needed to stitch mosaic

	
property detector

	Gets a copy of the detector used to align tiles in the mosaic

	
property matcher

	Gets a copy of the matcher used to align tiles in the mosaic

Only defined if using OpenCV.

	
property pool

	Returns a shared joblib pool, creating it if needed

	
placeholder(tile=None, fill_value=0)

	Creates a placeholder tile to fill in gaps in the mosaic

	Parameters

	
	tile (Tile) – tile to base the placeholder on. If not given, uses the first
tile in the tiles property.

	fill_value (float or int) – fill value

	Returns

	placeholder tile filled with provided value

	Return type

	Tile

	
bounds()

	Calculates bounds of the mosaic comprising the placed tiles

	Returns

	bounds of tile as (y1, x1, y2, x2)

	Return type

	tuple

	
copy()

	Creates a copy of the mosaic based on the grid

Using the grid instead of the list of tiles allows the grid-building
step to be skipped when the copy is initialized.

	Returns

	copy of the mosaic

	Return type

	Mosaic

	
save_params(path='params.json')

	Saves coordinates for placed tiles

	Parameters

	path (str) – path to the JSON file

	
load_params(path_or_obj='params.json')

	Loads coordinates for placed tiles at full scale

	Parameters

	path_or_obj (str or dict) – path to the JSON file or param dict from another mosaic

	Raises

	
	FileNotFoundError – thrown if input is path and path not found

	ValueError – thrown if JSON can’t be decoded or does not match this mosaic

	
reset_tiles()

	Reloads tiles at their full resolution

	
resize(size_or_shape, *args, **kwargs)

	Rescales all tiles in the mosaic using size or shape

	Parameters

	
	size_or_shape (int or tuple of ints) – size in megapixels or shape of resized image

	*args – any argument accepted by the resize function used by the tile class

	**kwargs – any keyword argument accepted by the resize function used by the
tile class

	
downsample(size_or_shape, *args, **kwargs)

	Downsamples all tiles in the mosaic using the given size or shape

	Parameters

	
	size_or_shape (int or tuple of ints) – size in megapixels or shape of resized image

	*args – any argument accepted by the resize function used by the tile class

	**kwargs – any keyword argument accepted by the resize function used by the
tile class

	
detect_and_extract()

	Detects and extracts features in tiles

	
align(origin=None, limit=None, **kwargs)

	Builds a mosaic by checking each tile against all others

	Parameters

	
	origin (Tile) – the tile around which to build the mosaic. If not given, method
will select the tile with the largest number of features.

	limit (int) – the number of tiles that must be successfully placed before the
method finishes. If not given, the method will continue until
it runs out of adjacent tiles with matching features. Setting
a limit allows a decent mosaic to be created quickly.

	kwargs – any keyword argument accepted by the align_to method on the
Tiles comprising this mosaic

	
build_out(*args, **kwargs)

	Warns user that build_out is not implemented in Mosaic class

Use StructuredMosaic instead to get this functionality.

	
smooth_seams(origin=None)

	Smooths intensities at seams between tiles

	Parameters

	origin (Tile) – starting tile

	
stitch(channel_order=None)

	Stitches mosaic using either placed tiles or row/col of tiles

	Parameters

	channel_order (str) – order of the three color channels in the stitched array, for
example, RGB. Uses the backend order if not given, which can
give unexpected results (for example, OpenCV uses BGR).

	Returns

	

	Return type

	numpy.ndarray

	
save(path)

	Saves mosaic to path

	Parameters

	path (str) – file path

	
show(*args, **kwargs)

	Shows the mosaic

	
class stitch2d.mosaic.StructuredMosaic(path_or_tiles, tile_class=None, dim=None, origin='upper left', direction='horizontal', pattern='raster')

	Bases: stitch2d.mosaic.Mosaic

Stitches a mosaic from a list of tiles with a known structure

	
__init__(path_or_tiles, tile_class=None, dim=None, origin='upper left', direction='horizontal', pattern='raster')

	Initializes a structured mosaic from a list of tiles

	Parameters

	
	path_or_tiles (str or list-like) – either the path to a directory containing tiles, a list of Tiles,
or a list of strings or arrays that can be used to create a Tile

	tile_class (class) – class to use for tiles in the mosaic. Defaults to OpenCVTile.

	dim (tuple or int) – either the shape of the mosaic as (height, width) or the number
of tiles in the direction traversed first, that is, the number of
columns (if horizontal) or number of rows (if vertical)

	origin (str) – the position of the first tile in the mosaic. One of “upper left”,
“upper right”, “lower left”, or “lower right”.

	direction (str) – direction to traverse first when building the mosaic. Either
“horizontal” or “vertical”.

	pattern (str) – whether the grid is rastered or snaked. Either “raster” or “snake”.

	
align(origin=None, limit=None, **kwargs)

	Builds a mosaic outward from a single tile using feature matching

	Parameters

	
	origin (Tile) – the tile around which to build the mosaic. If not given, method
will select a tile near the center of the mosaic.

	limit (int) – the number of tiles that must be successfully placed before the
method finishes. If not given, the method will continue until
it runs out of adjacent tiles with matching features. Setting
a limit allows a decent mosaic to be created quickly.

	kwargs – any keyword argument accepted by the align_to method on the
Tiles comprising this mosaic

	
build_out(from_placed=True, offsets=None)

	Builds out from already placed tiles using the given offset

Used to complete mosaics that include tiles that were not placed
when the mosaic was built, either because the user assigned a limit
or because the feature matching algorithm failed to find a home for
them.

	Parameters

	
	from_placed (bool) – if True, unplaced tiles will be tacked onto already placed tiles
using the given offsets. If False, a new mosaic will be calculated
from scratch using the given offsets.

	offsets (tuple) – offsets between adjacent tiles as dy_row, dx_row, dy_col, dx_col.
If not given, the method will estimate the offsets if any tiles
have been placed or will ignore offsets if not.

	
stitch2d.mosaic.build_grid(items, dim, origin='upper left', direction='horizontal', pattern='raster', fill_value=None)

	Builds a grid from a list

	Parameters

	
	items (list) – list to convert to a grid

	dim (tuple or int) – either the shape of the mosaic as (height, width) or the number
of tiles in the direction traversed first, that is, the number of
columns (if horizontal) or number of rows (if vertical)

	origin (str) – the position of the first tile in the mosaic. One of “upper left”,
“upper right”, “lower left”, or “lower right”.

	direction (str) – direction to traverse first when building the mosaic. Either
“horizontal” or “vertical”.

	pattern (str) – whether the grid is a raster or snake

	fill_value – value used to fill missing items in a ragged grid

	Returns

	List of rows in the grid

	Return type

	list

	
stitch2d.mosaic.create_mosaic(path_or_tiles, tile_class=None, dim=None, origin=None, direction=None, pattern=None)

	Creates a mosaic

See StructuredMosaic for available parameters.

	Returns

	tiles as either a structured or unstructured mosaic

	Return type

	Mosaic or StructuredMosaic

	
stitch2d.mosaic.is_grid(items)

	Tests if an iterable looks like a grid

	Parameters

	items (list-like) – list of items

	Returns

	True if tiles look like a grid, False if not

	Return type

	bool

stitch2d.tile

Reads and helps place a single image from a 2D grid

	
class stitch2d.tile.Tile(data, detector='sift')

	Bases: object

An image tile in a mosaic

	
source

	the original data used to created the tile. Either the path to an
image file or an array with 1, 3, or 4 channels.

	Type

	str or array-like

	
imdata

	image data

	Type

	numpy.ndarray

	
id

	a UUID uniquely identifying the tile

	Type

	str

	
row

	the index of the row where the tile appears in the mosaic

	Type

	int

	
col

	the index of the column where the tile appears in the mosaic

	Type

	int

	
y

	the y coordinate of the image within the mosaic

	Type

	float

	
x

	the x coordinate of the image within the mosaic

	Type

	float

	
channel_order

	the order of the three color channels in the image, e.g., RGB or BGR

	Type

	str

	
scale

	the current scale of the tile relative to the original image

	Type

	float

	
features_detected

	whether any features were detected in this image

	Type

	bool

	
descriptors

	list of descriptors found in this image

	Type

	numpy.ndarray

	
keypoints

	list of coordinates of descriptors found in this image

	Type

	numpy.ndarray

	
detectors = {}

	maps strings to a subclass-specific feature detector

	Type

	dict

	
matchers = {}

	maps strings to a subclass-specific feature matcher

	Type

	dict

	
__init__(data, detector='sift')

	Initializes a mosaic from a list of tiles

	Parameters

	
	data (str or numpy.ndarray) – path to an image file or an array of image data

	detector (str) – name of the detector used to find/extract features. Currently
only sift is supported.

	
property detector

	Gets the detector used to align this tile to another tile

	
property matcher

	Gets the matcher used to align this tile to another tile

	
property height

	Gets the height of the image in pixels

	
property width

	Gets the width of the image in pixels

	
property channels

	Gets the number of channels in the image

	
property channel_axis

	Gets the index where channel info is stored

	
property dtype

	Gets the dtype of the image

	
property shape

	Gets the shape of the image

	
property size

	Gets the size of the image

	
property mp

	Gets the size of the image in megapixels

	
property placed

	Whether the tile has been assigned coordinates in the mosaic

	
load_imdata()

	Loads copy of source data

	Returns

	copy of source data

	Return type

	numpy.ndarray

	
copy()

	Creates a copy of the tile

	Parameters

	grid (list of lists) – grid from the mosaic containing the tile

	Returns

	copy of the tile

	Return type

	Mosaic

	
bounds(as_int=False)

	Calculates the position of the tile within the mosaic

	Parameters

	as_int (bool) – whether bounds are converted to integers before returning

	Returns

	bounds of the image in the mosaic coordinate system as
(y1, x1, y2, x2)

	Return type

	tuple

	
neighbors()

	Finds adjacent tiles

	Parameters

	
	y (int) – row index

	x (int) – column index

	Returns

	neighboring tiles keyed to direction (top, right, bottom, left)

	Return type

	dict

	
convert_mosaic_coords(y1, x1, y2, x2)

	Converts mosaic coordinates to image coordinates

	Returns

	mosaic coordinates translated to image coordinates

	Return type

	tuple

	
update(other)

	Updates attributes to match another tile

	Parameters

	other (Tile) – a tile with attributes to copy over to this one

	
crop(box, convert_mosaic_coords=True)

	Crops tile to the given box

	Parameters

	
	box (tuple) – box to crop to as (y1, x1, y2, x2)

	convert_mosaic_coords (bool) – whether to convert the given coordinates from mosaic to image
coordinates

	Returns

	image data cropped to the given box

	Return type

	numpy.ndarray

	
intersection(other)

	Finds the intersection between two placed tiles

	Parameters

	other (Tile) – an adjacent tile that has already been placed in the mosaic

	Returns

	the overlapping portion of both tiles

	Return type

	tuple of Tile

	
intersects(other)

	Tests if two placed tiles intersect

	Parameters

	other (Tile) – an adjacent tile that has already been placed in the mosaic

	Returns

	True if tiles intersect, False otherwise

	Return type

	bool

	
reset()

	Restores original image and resets coordinate and feature attrs

	Returns

	the original tile updated to restore the original image data

	Return type

	Tile

	
match_gamma_to(other)

	Scales intensity to match intersecting region of another tile

	Parameters

	other (Tile) – a tile that intersects this one

	Returns

	the original tile with its intensity modified

	Return type

	Tile

	
draw(others=None)

	Creates an image from the provided tiles

	Parameters

	others (list of Tiles) – a list of tiles to include in the new image. Only tiles that
have been placed will be included.

	Returns

	an image including all provided tiles

	Return type

	numpy.ndarray

	
save(path, others=None)

	Saves an image created from the provided tiles

	Parameters

	
	path (str) – file path

	others (list of Tiles) – a list of tiles to include in the new image. Only tiles that
have been placed will be included.

	
show(others=None)

	Shows an image created from the provided tiles

	Parameters

	others (list of Tiles) – a list of tiles to include in the new image. Only tiles that
have been placed will be included.

	
gray()

	Returns copy of image converted to grayscale

	Returns

	grayscale version of the original iamge

	Return type

	numpy.ndarray

	
resize(size_or_shape, *args, **kwargs)

	Resizes image to a given size or shape

	Parameters

	
	size_or_shape (float, int, or tuple of ints) – size in megapixels or shape of resized image

	*args – any argument accepted by the resize function used by the subclass

	**kwargs – any keyword argument accepted by the resize function used by the
subclass

	
downsample(size_or_shape, *args, **kwargs)

	Downsamples image to a given size or shape if smaller than original

	Parameters

	
	size_or_shape (float, int, or tuple of ints) – size in megapixels or shape of resized image as (height, width)

	*args – any argument accepted by the resize method of the subclass

	**kwargs – any keyword argument accepted by the resize method of the subclass

	Returns

	the original tile downsampled to the given size or shape

	Return type

	Tile

	
prep_imdata()

	Returns a copy of the tile data suitable for feature detection

Users may wish to create a subclass with a custom version of this method,
for example, to scale intensities, enhance contrast, or select image data
from an array that include additional bands.

	Returns

	copy of image data

	Return type

	numpy.ndarray

	
detect_and_extract(*args, **kwargs)

	Detects and extracts features within the tile

	Parameters

	
	*args – any argument accepted by the feature detection method on the
detector

	**kwargs – any keyword argument accepted by the feature detection method
on the detector

	
align_to(other, **kwargs)

	Aligns tile to another, already placed tile

	Parameters

	other (Tile) – a tile that has already been placed in the mosaic

	
static backend_save(path, im)

	Saves image to path using the tile backend

	Parameters

	
	path (str) – file path

	im (numpy.ndarray) – image data

	
static backend_show(im)

	Shows an image using the tile backend

	Parameters

	im (numpy.ndarray) – image data

	
class stitch2d.tile.OpenCVTile(data, detector='sift', matcher='flann')

	Bases: stitch2d.tile.Tile

An image tile in a mosaic loaded and manipulated using OpenCV

See Tile for available attributes.

	
detectors = {'sift': <stitch2d.tile._DefaultInstance object>}

	maps strings to a subclass-specific feature detector

	Type

	dict

	
matchers = {'bf': <stitch2d.tile._DefaultInstance object>, 'flann': <stitch2d.tile._DefaultInstance object>}

	maps strings to a subclass-specific feature matcher

	Type

	dict

	
__init__(data, detector='sift', matcher='flann')

	Initializes a mosaic from a list of tiles

	Parameters

	
	data (str or numpy.ndarray) – path to an image file or an array of image data

	detector (str) – name of the detector used to find/extract features. Currently
only sift is supported.

	
load_imdata()

	Loads copy of source data

	Returns

	copy of source data

	Return type

	numpy.ndarray

	
gray()

	Returns copy of image converted to grayscale

	Returns

	grayscale version of the original iamge

	Return type

	numpy.ndarray

	
resize(size_or_shape, *args, **kwargs)

	Resizes image to a given size or shape

	Parameters

	
	size_or_shape (float, int, or tuple of ints) – size in megapixels or shape of resized image as (height, width)

	*args – any argument accepted by cv.resize

	**kwargs – any keyword argument accepted by cv.resize

	Returns

	the original tile resized to the given size or shape

	Return type

	OpenCVTile

	
prep_imdata()

	Returns a copy of the tile data suitable for feature detection

The built-in version of this method checks if the imdata attribute is
an 8-bit array, returning a copy if so. Otherwise, it rescales the
intensities and returns an 8-bit copy of the array. The conversion is
simplistic, and users may prefer to create a subclass with a custom
version of this method instead, for example, to scale intensities,
enhance contrast, or select image data from an array that include
additional bands.

	Returns

	copy of image data as an 8-bit array

	Return type

	numpy.ndarray

	
detect_and_extract(*args, **kwargs)

	Detects and extracts features within the tile

	Parameters

	
	*args – any argument accepted by the detect_and_extract method on the
detector

	**kwargs – any keyword argument accepted by the detect_and_extract method
on the detector

	Returns

	the original tile updated with features and keypoints

	Return type

	OpenCVTile

	
align_to(other, **kwargs)

	Aligns tile to another, already placed tile

	Parameters

	other (Tile) – a tile that has already been placed in the mosaic

	Returns

	the original tile updated with x and y coordinates

	Return type

	OpenCVTile

	
static backend_save(path, im)

	Saves image to path using OpenCV

	Parameters

	
	path (str) – file path

	im (numpy.ndarray) – image data

	
static backend_show(im, title='OpenCV Image')

	Shows an image using OpenCV

	Parameters

	im (numpy.ndarray) – image data

	
class stitch2d.tile.ScikitImageTile(data, detector='sift')

	Bases: stitch2d.tile.Tile

An image tile in a mosaic loaded and manipulated using scikit-image

See Tile for available attributes.

	
detectors = {'sift': <stitch2d.tile._DefaultInstance object>}

	maps strings to a subclass-specific feature detector

	Type

	dict

	
__init__(data, detector='sift')

	Initializes a mosaic from a list of tiles

	Parameters

	
	data (str or numpy.ndarray) – path to an image file or an array of image data

	detector (str) – name of the detector used to find/extract features. Currently
only sift is supported.

	
load_imdata()

	Loads copy of source data

	Returns

	copy of source data

	Return type

	numpy.ndarray

	
gray()

	Returns copy of image converted to grayscale

	Returns

	grayscale version of the original iamge

	Return type

	numpy.ndarray

	
resize(size_or_shape, *args, **kwargs)

	Resizes image to a given size or shape

	Parameters

	
	size_or_shape (float, int, or tuple of ints) – size in megapixels or shape of resized image

	*args – any argument accepted by skimage.transform.resize

	**kwargs – any keyword argument accepted by skimage.transform.resize

	Returns

	the original tile resized to the given size of shape

	Return type

	ScikitImageTile

	
detect_and_extract(*args, **kwargs)

	Detects and extracts features within the tile

	Parameters

	
	*args – any argument accepted by the detect_and_extract method on the
detector

	**kwargs – any keyword argument accepted by the detect_and_extract method
on the detector

	Returns

	the original tile updated with features and keypoints

	Return type

	ScikitImageTile

	
align_to(other, **kwargs)

	Aligns tile to another, already placed tile

	Parameters

	other (Tile) – a tile that has already been placed in the mosaic

	Returns

	the original tile updated with x and y coordinates

	Return type

	ScikitImageTile

	
static backend_save(path, im)

	Saves image to path using skimage

	Parameters

	
	path (str) – file path

	im (numpy.ndarray) – image data

	
static backend_show(im)

	Shows an image using skimage

	Parameters

	im (numpy.ndarray) – image data

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 stitch2d	

 	
 	
 stitch2d.mosaic	

 	
 	
 stitch2d.tile	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | X
 | Y

_

 	
 	__init__() (stitch2d.mosaic.Mosaic method)

 	(stitch2d.mosaic.StructuredMosaic method)

 	(stitch2d.tile.OpenCVTile method)

 	(stitch2d.tile.ScikitImageTile method)

 	(stitch2d.tile.Tile method)

A

 	
 	align() (stitch2d.mosaic.Mosaic method)

 	(stitch2d.mosaic.StructuredMosaic method)

 	
 	align_to() (stitch2d.tile.OpenCVTile method)

 	(stitch2d.tile.ScikitImageTile method)

 	(stitch2d.tile.Tile method)

B

 	
 	backend_save() (stitch2d.tile.OpenCVTile static method)

 	(stitch2d.tile.ScikitImageTile static method)

 	(stitch2d.tile.Tile static method)

 	backend_show() (stitch2d.tile.OpenCVTile static method)

 	(stitch2d.tile.ScikitImageTile static method)

 	(stitch2d.tile.Tile static method)

 	
 	bounds() (stitch2d.mosaic.Mosaic method)

 	(stitch2d.tile.Tile method)

 	build_grid() (in module stitch2d.mosaic)

 	build_out() (stitch2d.mosaic.Mosaic method)

 	(stitch2d.mosaic.StructuredMosaic method)

C

 	
 	channel_axis (stitch2d.tile.Tile property)

 	channel_order (stitch2d.tile.Tile attribute)

 	channels (stitch2d.tile.Tile property)

 	col (stitch2d.tile.Tile attribute)

 	
 	convert_mosaic_coords() (stitch2d.tile.Tile method)

 	copy() (stitch2d.mosaic.Mosaic method)

 	(stitch2d.tile.Tile method)

 	create_mosaic() (in module stitch2d.mosaic)

 	crop() (stitch2d.tile.Tile method)

D

 	
 	descriptors (stitch2d.tile.Tile attribute)

 	detect_and_extract() (stitch2d.mosaic.Mosaic method)

 	(stitch2d.tile.OpenCVTile method)

 	(stitch2d.tile.ScikitImageTile method)

 	(stitch2d.tile.Tile method)

 	detector (stitch2d.mosaic.Mosaic property)

 	(stitch2d.tile.Tile property)

 	
 	detectors (stitch2d.tile.OpenCVTile attribute)

 	(stitch2d.tile.ScikitImageTile attribute)

 	(stitch2d.tile.Tile attribute)

 	downsample() (stitch2d.mosaic.Mosaic method)

 	(stitch2d.tile.Tile method)

 	draw() (stitch2d.tile.Tile method)

 	dtype (stitch2d.tile.Tile property)

F

 	
 	features_detected (stitch2d.tile.Tile attribute)

G

 	
 	gray() (stitch2d.tile.OpenCVTile method)

 	(stitch2d.tile.ScikitImageTile method)

 	(stitch2d.tile.Tile method)

 	
 	grid (stitch2d.mosaic.Mosaic attribute)

H

 	
 	height (stitch2d.tile.Tile property)

I

 	
 	id (stitch2d.tile.Tile attribute)

 	imdata (stitch2d.tile.Tile attribute)

 	
 	intersection() (stitch2d.tile.Tile method)

 	intersects() (stitch2d.tile.Tile method)

 	is_grid() (in module stitch2d.mosaic)

K

 	
 	keypoints (stitch2d.tile.Tile attribute)

L

 	
 	load_imdata() (stitch2d.tile.OpenCVTile method)

 	(stitch2d.tile.ScikitImageTile method)

 	(stitch2d.tile.Tile method)

 	
 	load_params() (stitch2d.mosaic.Mosaic method)

M

 	
 	match_gamma_to() (stitch2d.tile.Tile method)

 	matcher (stitch2d.mosaic.Mosaic property)

 	(stitch2d.tile.Tile property)

 	matchers (stitch2d.tile.OpenCVTile attribute)

 	(stitch2d.tile.Tile attribute)

 	
 	
 module

 	stitch2d

 	stitch2d.mosaic

 	stitch2d.tile

 	Mosaic (class in stitch2d.mosaic)

 	mp (stitch2d.tile.Tile property)

N

 	
 	neighbors() (stitch2d.tile.Tile method)

 	
 	num_cores (stitch2d.mosaic.Mosaic attribute)

O

 	
 	OpenCVTile (class in stitch2d.tile)

P

 	
 	params (stitch2d.mosaic.Mosaic property)

 	placed (stitch2d.mosaic.Mosaic property)

 	(stitch2d.tile.Tile property)

 	
 	placeholder() (stitch2d.mosaic.Mosaic method)

 	pool (stitch2d.mosaic.Mosaic property)

 	prep_imdata() (stitch2d.tile.OpenCVTile method)

 	(stitch2d.tile.Tile method)

R

 	
 	reset() (stitch2d.tile.Tile method)

 	reset_tiles() (stitch2d.mosaic.Mosaic method)

 	resize() (stitch2d.mosaic.Mosaic method)

 	(stitch2d.tile.OpenCVTile method)

 	(stitch2d.tile.ScikitImageTile method)

 	(stitch2d.tile.Tile method)

 	
 	row (stitch2d.tile.Tile attribute)

S

 	
 	save() (stitch2d.mosaic.Mosaic method)

 	(stitch2d.tile.Tile method)

 	save_params() (stitch2d.mosaic.Mosaic method)

 	scale (stitch2d.tile.Tile attribute)

 	ScikitImageTile (class in stitch2d.tile)

 	shape (stitch2d.mosaic.Mosaic attribute)

 	(stitch2d.tile.Tile property)

 	show() (stitch2d.mosaic.Mosaic method)

 	(stitch2d.tile.Tile method)

 	size (stitch2d.mosaic.Mosaic attribute)

 	(stitch2d.tile.Tile property)

 	
 	smooth_seams() (stitch2d.mosaic.Mosaic method)

 	source (stitch2d.tile.Tile attribute)

 	stitch() (stitch2d.mosaic.Mosaic method)

 	
 stitch2d

 	module

 	
 stitch2d.mosaic

 	module

 	
 stitch2d.tile

 	module

 	StructuredMosaic (class in stitch2d.mosaic)

T

 	
 	Tile (class in stitch2d.tile)

 	
 	tile_class (stitch2d.mosaic.Mosaic attribute)

 	tiles (stitch2d.mosaic.Mosaic property)

U

 	
 	update() (stitch2d.tile.Tile method)

W

 	
 	width (stitch2d.tile.Tile property)

X

 	
 	x (stitch2d.tile.Tile attribute)

Y

 	
 	y (stitch2d.tile.Tile attribute)

 nav.xhtml

 Table of Contents

 		
 stitch2d

 		
 User guide

 		
 Install

 		
 Quick start

 		
 Overview

 		
 Mosaic

 		
 StructuredMosaic

 		
 Beyond 8-bit images

 		
 Similar tools

 		
 API

 		
 stitch2d.mosaic

 		
 stitch2d.tile

_static/file.png

_static/minus.png

_static/plus.png

